俄科学家发现改进磁传感器方法,TMR磁传感器技术发展背景

by admin on 2019年11月7日

图片 1

图片 2

图片 3

控制和通信IC的发展在实现下一代的机器人中起到重要作用。然而,这些复杂的现代机器人的核心是许多新的、小型化和低成本的传感技术的出现与融合。对实现下一代机器人至关重要的几项关键传感器技术包括磁性位置传感器、存在传感器、手势传感器、力矩传感器、环境传感器和电源管理传感器。

俄罗斯科学院发布消息称,其西伯利亚分院克拉斯诺亚尔斯克科学中心基连斯基物理研究所的科学家首次发现,由金属、氧化物和硅衬底组成的混合结构具有高磁阻值,该结构的电阻可随光学效应发生改变,并可通过磁场来控制电压。该效应的本质是混合结构中的电子在移动时,对磁场更为敏感。利用这一特性,可制造具有特定磁导率的材料,研制出由磁场控制的电子设备,并扩展现有磁传感器性能。

早在1975年,Julliere就在Co/Ge/Fe磁性隧道结(Magnetic Tunnel Junctions,
MTJs)中观察到了TMR效应。但是,这一发现当时并没有引起人们的重视。在这之后的十几年内,TMR
效应的研究进展十分缓慢

磁性位置传感器——机器人革命中的幕后英雄

此外,据研究专家介绍,这种基于半导体形成的混合结构与现代电子产品的工艺基础——CMOS技术完全兼容。目前,俄科学家正在继续研究混合结构以及其它成分和组态的导电性。

1988
年,巴西学者Baibich在法国巴黎大学物理系Fert教授领导的科研组中工作时,首先在Fe/Cr多层膜中发现了巨磁电阻(GMR)效应。TMR效应和GMR效应的发现导致了凝聚态物理学中新的学科分支——磁电子学的产生。20年来,GMR效应的研究发展非常迅速,并且基础研究和应用研究几乎齐头并进,已成为基础研究快速转化为商业应用的国际典范。

在当今消费、专业服务、社交,甚至是工业机器人中最为普遍的传感器技术之一是磁性角度位置传感器集成电路
(IC)。参见图1.0。当前,消费、专业服务或社交机器人的每个关节几乎都用到两个或更多的磁性角度位置传感器IC。每个运动轴或关节旋转需要使用至少一个磁性角度位置传感器。当今的许多机器人都采用小而强大的无刷直流电机
(BLDC)
来移动机器人的关节和四肢。为了正确驱动电机,需要知道电机的当前位置。

随着GMR效应研究的深入,TMR效应开始引起人们的重视。尽管金属多层膜可以产生很高的GMR值,但强的反铁磁耦合效应导致饱和场很高,磁场灵敏度很小,从而限制了GMR效应的实际应用。MTJs中两铁磁层间不存在或基本不存在层间耦合,只需要一个很小的外磁场即可将其中一个铁磁层的磁化方向反向,从而实现隧穿电阻的巨大变化,故MTJs较金属多层膜具有高得多的磁场灵敏度。同时,MTJs这种结构本身电阻率很高、能耗小、性能稳定。因此,MTJs无论是作为读出磁头、各类传感器,还是作为磁随机存储器(MRAM),都具有无与伦比的优点,其应用前景十分看好,引起世界各研究小组的高度重视。

图1.0——采用圆盘形磁体的磁性位置传感器

TMR效应由于具有磁电阻效应大、磁场灵敏度高等独特优势,从而展示出十分诱人的应用前景。概括来说,TMR
材料主要用于计算机硬盘的读出磁头、MRAM和各类磁传感器。

磁性角度位置传感器 IC
越来越广泛地用来为移动关节的电机控制器提供电机换向反馈。参见图
2.0。此外,机器人关节的闭环电机控制也需要关节齿轮的角度位置反馈。因此在机器人关节的每个运动轴上需要两个磁性角度位置传感器。例如,当机器人的脚踝需要同时进行前后和转动两个轴方向的运动时,总共需要使用四个磁性位置传感器。由于每个关节的这种成倍需求,以及大多数机器人中所需要的关节数大大增加,磁性角度位置传感器为何如此大量地用于当今最新推出的机器人中就显而易见了。

目前,高密度、大容量和小型化已成为计算机存储的必然趋势。上世纪90年代初,磁电阻型读出磁头在硬磁盘驱动器中的应用,大大促进了硬磁盘驱动器性能的提高,使其面记录密度达到了Gb/in2的量级。十几年来,磁电阻磁头已从当初的各向异性磁电阻磁头发展到GMR磁头和TMR磁头。TMR磁头材料的主要优点是磁电阻比和磁场灵敏度均高于GMR磁头,而且其几何结构属于电流垂直于膜面(CPP)型,适合于超薄的缝隙间隔。

图2.0——带有磁性位置传感器的机器人手臂

基于TMR效应制作的MRAM具有集成度高、非易失性、读写速度快、可重复读写次数大、抗辐射能力强、功耗低和寿命长等优点,它既可以做计算机的内存储器,也可以做外存储器。作为内存储器,与市场上通用的半导体内存储器相比,它的优点是非失性、存取速度快、抗辐射能力强;作为外存储器,它比Flash存储器存取速度快1000倍,而且功耗小,寿命长。与硬磁盘相比,它的优势是无运动部件,使用起来与Flash存储器一样方便。TMR材料还可以做成各种高灵敏度磁传感器,用于检测微弱磁场和对微弱磁场信号进行传感。由于此类传感器体积小、可靠性高、响应范围宽,在自动化技术、家用电器、商标识别、卫星定位、导航系统以及精密测量技术方面具有广阔的应用前景。

但是为什么选择磁性角度位置传感器IC?

高灵敏度——被检测信号的强度越来越弱,需要磁性传感器灵敏度得到极大提高。应用方面包括电流传感器、角度传感器、齿轮传感器、太空环境测量。

于之前用于机器人关节中的竞争性的位置传感器技术相比,当今最新的磁性角度位置传感器具备多项优势。新型磁性位置传感器IC提供高分辨率和重复精度。此外,由于制造采用了CMOS硅技术,与竞争性位置传感器技术相比,它们所需的功率、重量和体积都非常小。此外,磁性位置传感器IC可以在非常恶劣的环境中工作,包括极端温度和肮脏多尘的环境。有些磁性位置传感器甚至可以免受机器人工作环境中常见的杂散场干扰。最后,与低成本社交/玩具机器人的传统伺服电机组件中常见的电阻电位计不同的是磁性位置传感器是非接触式的,没有运动的机械部件,所以不会磨损。正是由于所有这些内在优势,磁性角度位置传感器在当今的消费、专业服务和社交机器人,现在甚至在工业机器人中都被广泛采用。

电流传感器:需要检测到nA级别的电流,即使加上聚磁环,也需要磁性传感器本身的检测精度达到nT的水平

存在传感器

角度传感器:0.01的分辨率

现在,数项存在传感器技术正被集成到当今的机器人中,它们的数据会融合在一起,用于为机器人提供空间视觉感知以及物体检测和避让。2D和3D视觉立体摄像头在当今的新型消费和专业服务机器人中都很常见。然而,新型的先进传感器技术,如包括基于飞行时间的光检测和测距
(LIDAR)
传感器,也越来越多地部署到机器人当中。LIDAR为机器人提供其工作空间及周围环境的高分辨率3D测绘,以便它可以更好地执行任务并四处移动。参见图3.0。

齿轮传感器:齿轮的精细化以及传感器到齿轮的间距的最大化,导致磁性信号变得非常微弱

图3.0——LIDAR 测绘

太空环境测量:分辨率0.015nT

发表评论

电子邮件地址不会被公开。 必填项已用*标注

网站地图xml地图